Set-valued samples based support vector regression and its applications

نویسندگان

  • Jiqiang Chen
  • Witold Pedrycz
  • Minghu Ha
  • Litao Ma
چکیده

In this study, we address the regression problem on set-valued samples that appear in applications. To solve this problem, we propose a support vector regression approach for set-valued samples that generalizes the classical e-support vector regression. First, an initial representative point (or an element) for every set-valued sample is selected, and a weighted distance between the initial representative point and other points is determined. Second, based on the classification consistency principle, a search algorithm to determine the best representative point for every set-valued datum is designed. Thus, the set-valued samples are converted into numeric samples. Finally, a support vector regression that is based on set-valued data is constructed, and the regression results of the set-valued samples can be approximated using the method used for the numeric samples. Furthermore, the feasibility and efficiency of the proposed method is demonstrated using experiments with real-world examples concerning wind speed prediction and the prediction of peak particle velocity. 2014 Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

Group Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making

Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...

متن کامل

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

Prediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system

Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...

متن کامل

Prediction of Fe-Co-Mn/MgO Catalytic Activity in Fischer-Tropsch Synthesis Using Nu-support Vector Regression

Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015